

Quallion Technology

- 1. Zero Volt Storage Capability
- 2. SaFE-LYTE Technology
- 3. Matrix Battery Pack

H. Tsukamoto CEO and CTO

Quallion LLC, 12744 San Fernando Road, Sylmar, CA 91342

NASA Aerospace Battery Workshop

December, 2005

1. Zero Volt Storage Capability

Metal Polarization Test

Reference Electrode

Counter Electrode
Disassembled

Counter Electrode
Assembled

Working Electrode

38 mm x 38 mm square

Polished with SiC sandpaper

Ultrasonically Cleaned

Vacuum dried overnight

Polarization Test Cell

Test Conditions

LiPF₆ EC:DEC

37° C

Scan Rate: 0.167mV/s

Testing inside a Glove box

Working Area 1.98 cm²

Polarization Curves

SDP

LiPF₆ EC:DEC at 37° C, Scan Rate: 0.167mV/s

Titanium Foil for Negative Substrate

4.2

4.0

14 days at 0 Volts Room Temp

Capacity Retention: 79.9%

CC Charge: C/10 to 4.0V

CV Charge: 4.0V to C/100 cutoff

Discharge: C/10 to 3.0V Temperature: Room Temp

Storage: 0V, at RT for 14 days

Capacity Retention: 98.6%

Titanium Foil for Negative Substrate

Did not have zero-volt storage capability at 37C storage

CC Charge: C/10 to 4.0V

CV Charge: 4.0V to C/100 cutoff

Discharge: C/10 to 3.0V

Storage: 0V, at 37 deg C for

14 days

Capacity Retention: 73.5%

AC Impedance / Cyclic Voltammetry Testing

Negative Electrode Cyclic Voltammetry Scan

Graphite electrode on platinum pin

Negative Half Cell; LiPF₆ EC:DEC at 25° C; Scan Rate: 0.2 mV/s

SEI Decomposition

After the storage time at 37°C, impedance decreased indicating that the SEI Film has decomposed.

Negative Half Cell; LiPF₆ EC:DEC at 25° C; 100kHz – 0.05 Hz

Three Key Potentials

ZCP < FDP and ZCP < SDP

Zero-Volt[™] Storage Capability

Zero-Volt[™] Storage Testing

- 1. Initial cycle
- 2. Connect 68 Ohm resistor and store at 37°C
- 3. Cycle after storage
- 4. Compare discharge capacities before and after storage

United States Patent 6,596,439 and 6,553,263

Capacity Check Cycle

CC Charge: C/2 to 4.1V

CV Charge: 4.1V to C/20 cutoff

Discharge: C/2 to 2.7V Storage: 0V, at 37 deg C

SONY hard carbon cell vs. Quallion zero-volt 18650 cells

Quallion 18650

SONY hard carbon cell vs. Quallion zero-volt cells

-Before and After 3 days Storage at Zero Volt-

2. What is SaFE-LYTE™? Electrolyte immiscible additive

(12) United States Patent Tsukamoto et al.

(45) Date of Patent: Sep. 28, 2004

(54) ELECTROLYTE SYSTEM AND ENERGY STORAGE DEVICE USING SAME

(75) Inventors: Hisashi Tsukamoto, Saugus, CA (US); Tsuneaki Koike, Valencia, CA (US)

(73) Assignee: Quallion LLC, Sylmar, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/034,316

Prior Publication Data

US 2003/0129498 A1 Jul. 10, 2003

. H01M 6/16; H01M 10/40 (52) U.S. Cl. 429/306; 429/324; 429/326; 252/62.2 252/62.2; 429/306.

429/324, 326, 330, 332, 338, 342

(56)References Cited

U.S. PATENT DOCUMENTS

5,229,227	Α		7/1993	Webber
5,830,600	A	*	11/1998	Narang et al 429/199
5,916,708	A		6/1999	Besenhard et al.
6,210,835	B1	٠	4/2001	Arai 429/231.95
6,232,020				Song et al.
2002/0110739				McEwen et al.
2002/0160273	A1	٠	10/2002	Arai et al 429/326

FOREIGN PATENT DOCUMENTS

	TORLIGHT PRICE!							
EP	0807986 A * 11/1997							
EP	0 631 339 B1 7/2001							
EP	1 205 997 A1 5/2002							
EP	1 253 662 A1 10/2002							
JP	07-249432 9/1995							
JP	10-012272 A * 1/1998							
JP	10050343 A2 2/1998							
JP	11317232 A2 11/1999							
JP	2000106209 A2 4/2000							

US 6,797,437 B2 (10) Patent No.:

2000164249 A2 2001060464 A2 3/2001 2001143749 A2 2002042891 A2 2/2002 2002190316 A2 7/2002 2002-190316

OTHER PUBLICATIONS

Galden PFPE:Heat Transfer Fluids Product Data Sheet for Galden ® HT90 Fluid [online]. Solvay Solexis, Inc., 2002 [retrieved on Feb. 23, 2003]. Retrieved from the Internet <ur><URL: www.solvaysolexis.com/pdf/gald_heat.pdf>.* Data sheet for Ethylene Carbonate obtained from Chemfinder.com [online]. CambridgeSoft Corporation, 2003 [retrieved on Feb. 23, 2003]. Retrieved from the Internet: <URL; www.chemfinder.cambridgesoft.com/result.asp>.

* cited by examiner

Primary Examiner-Susy Tsang-Foster (74) Attorney, Agent, or Firm-M. Elizabeth Bush

ABSTRACT

A secondary cell employs a non-aqueous electrolyte solution including a non-aqueous solvent and a salt, and a flame retardant material that is a liquid at room temperature and pressure and substantially immiscible in the non-aqueous electrolyte solution. The non-aqueous electrolyte solution is formed by dissolving a salt, preferably an alkali metal salt, in a non-aqueous solvent. The non-aqueous solvent preferably includes a cyclic carbonate and/or a linear carbonate. The cyclic carbonate preferably contains an alkylene group with 2 to 5 carbon atoms, and the linear carbonate preferably contains a hydrocarbon group with 1 to 5 carbon atoms Preferred salts include LiPF, and LiBF, at a concentration from about 0.1 to about 3.0 moles/liter in the non-aqueous solvent. The flame retardant material is preferably a halogen-containing compound, and preferred halogen containing compounds are perfluoroalkyl groups and perfluoroether groups present in an amount per weight of nonaqueous solvent in a range of from about 1 to about 99 wt

57 Claims, No Drawings

Issued on 9/28/04 Patent No. 6,797,437

Claim 1

"substantially immiscible in the non-aqueous electrolyte solution"

What is SaFE-LYTE™? Self-extinguishing additive

Flammability Test

Paper

A: EC/DEC Soaking

B: SaFE-LYTE™ Soaking

Ignite the unsoaked paper at the bottom of the strip

What is SaFE-LYTE™? Self-extinguishing additive

$18650 + Safe-LYTE^{TM}$

SaFE-LYTE H: >220C

Cathode thermal reaction temperature: 170-190C

SaFE-LYTE M: 160C

3. Matrix Battery Pack

Conventional Battery Pack

Matrix Battery Pack

Survivability Comparison

Conventional pack test results F1, F2, F3 failures

100% DOD Room temperature 29.4 V 18.9 V

The conventional pack cannot survive more than one cycle with three failure modes present.

Conventional battery pack -1st cycle-

Conventional pack results, F1 and F2

100% DOD Room temperature 29.4 V 18.9 V

 Even after replacement of the unmatched capacity cell with a correct capacity cell, the voltages still drop.

Matrix Battery Pack -1st cycle-

Quallion Matrix Pack Test Results F1, F2, F3

- Voltages of individual batteries under failure conditions are able to maintain operational voltage levels.
- Only one cell under the self-discharge condition loses its voltage, but only when nearing 20 cycles.

Hybrid Matrix Battery Pack

Matrix Battery Pack Can Accommodate

Different Capacity and Impedance Cells if Needed

	HP Cells	HE Cells
Energy density	120Wh/kg	200Wh/kg
Power density	1000W/kg	200W/kg

HP+HE: Flexible Performance

-15C pulse test-

- 4HP: configuration has a smaller voltage drop
- 3HP+1HE: slightly larger voltage drop but more capacity

15C x 10 sec. pulse discharge, 2 min. rest, 15Cx 10sec. pulse charge

➤ It is possible to vary the battery pack performance characteristics without changing the footprint of the battery pack.

Modular Approach with Matrix Battery Pack

- Modular pack
 - Reduces the complexity of many cells
 - Interchangeable and reconfigurable
 - HE module pack and HP module Hybrid pack

10P of 3Ah cell 30Ah Modular Pack

Re-configurable on earth and in space -Matrix + Modular-

- Easily changed
- Simple connections
- Configurable on the fly

Quallion Technology

- 1. Zero-volt capability
 - Range safety (battery assembly at discharge state)
 - In space storage without maintenance charge
- 2. SaFE-LYTE™
 - Significant safety improvement in combination with Current Interrupting Device
- 3. Matrix Battery Pack
 - Improve reliability and survivability
 - HP + HE hybrid pack
 - Modular approach